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AN ~ISY~ETRI~ PROBE FOR A LAYER WITH A SYSTEM 
OF THIN ELASTIC INCl_USIONS* 

V.P. s11,GvANyuK and M.M. STADNIK 

An approximate method is proposed for determining the stress 
concentration in an infinite elastic layer naar a system of thin elastic 
inclusions bounded by coaxial ~500th surfaces of revolution, The 
problem is reduced to a system of integral equations of the second 
kind by a Fiankel transformation, which can then be solved by successive 
approximations or numerically. A numerical computation is performed 
for the case of two spheroidal inclusions in unbounded space. The 
results are compared with those known in the literature. 

1, In an elastic layer, let iV thin inclusions of different geometric parameters and 
elastic properties, bounded by smooth surfaces of revolution V*(i= i, . . . . N) and having 
plane middle surfaces parallel to the layer boundaries (Fig. 11, be contained on an axis 
normal to the layer boundaries. The inclusions and the layer material are connected along 
the whole common boundary. We introduce a cylindrical system of coordinates r,cp,r with the 
& axis coincident with the axis of revolution of the surfaces I'&. Axisymmetric forces, 
which cause a normal stress s,i and a tangential stress f,t in the middlesurfaces St of the 
inclusions in the case of a homogeneous layer (St are circles of radii st) are applied to 
the layer boundaries. We will determine the stress concentration in the neighbourhood of 
the inclusions. 

For an approximate solution of the problem, we replace the inclusions by cavities with 
a certain stress distribution on the surfaces VJ. The assumptions of small thickness of the 
inclusions U,(r)@, <ut), smoothness of the surfaces Vt (It%‘ I dr<i), and stiffness of the 
inclusions (E,<B) permit the strong interaction between the inclusions and the fundamental 
material to be represented approximately by the relationships /1,2/ 

Fig.1 Pig.2 

where [ul = u+- @(a~" and IL- are values of the quantity U on the upper and lower edges of the 
surfaces V, with respect to the domains St* respectively), E,, Pi are the elastic and 

shear moduli of the material of the inclusions, E is the elastic modulus of the host matrix, 

ui* = ut* (Yi'. 4?) is the displacement vector of points of the surfaces V{.which is assumed 
to be equal approximately to the sum uf + al, where u, is the displacement vector of 
points of the surface of a mathematical slit along St to whose edges unknown stresses ff* - 

I,, f4 = ft t,Lt, f,ff are awli and uf is the known displacement vector of points of the 
surface v, in the case of a hmogmecms layer sUbjected to given forces on the boundary. 

It is known /3,4/ that the state of stress in the neighbourhood of the tip portion of a 

thin Cavity can be represented in terms of StreBS intensity factors for an eqUivalantlY 
stressed mathematical slit along the middle surface of the cavity. 

Therefore, the problem of inhomogeneities reduces to a certain boundary value problem 
in elasticity theory for a layer with the slits S's 
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W) Q, (r, ~0) = a,, (r, zh-+d = 0 (OQr<-) 

0, (r, zo) - 0, (r, z~+d = 0, a,, (r, zd - fzi* (r) - f,i (4 (0 < r < 00) 

u&, zi) = fh* W - fti (9 (0 Q r < 4 

where z E sO,z = zN,~ are the layer boundaries, and .z = q (i = i,....Nfare planes containing 
the middlesurfacesof the inclusions S,,t,,>z~. 

2. We represent the tensor of the state of stress in the layer in the form 151 

h-+1 
(I= xsi (2.1) 

i-0 

Here a'(i = 1, . .., N) is the stress tensor in unbounded space with a plane slit along 
St, us and ux+l are the stress tensors in half-spaces with the boundaries x= q, and x = zx+r, 
respectively. 

The boundary conditions for such auxiliary problems will be the following: 
iv+1 1y+1 

e,,"(r, ZO)==- 2 azzjfr, 41, u,O(r. 20)= - ,z o,'(r, zo) (2.2) 

N 
N+1 

G* (rr 2i4=- Z u!~(~,zN+~. 
+o 

(O<?<U,), i=i,...,N 

As is known, the axisymmetric state of stress in a body can be 
two harmonic functions @,,q. The stress tensor and displacement 
each state of stress u4 are expressed in the form 

(2.3) 

represented in terms of 
vector components for 

2pu*i=(z-zz,) c (@l’ 4 a5 
as 

(X4) 

2~~-(s-zi) *(@Ii+%? 
&L% 

+?!$+(*-2@&.+ 

t 
u**~"pp(z-zi) at(@:-l"cD;') -+ 

c&'-(2- Oi) *(*;@A ; zi 

where p,v are the shear modulus and Poisson's ratio of the host material. 
We will represent the harmonic functions @:,a,' in the form of Hankel integral 

expansions 

where A,' are unknown functions, and Jo is a Bessel function of the first kind. 
First we consider the boundary value problem (2.2). Substituting the expression for the 

stress tensor components in the form of the functions @kiinto conditions (2.2), taking 
account of the integral representations (2,5), and applying the Hankel transformation, we 
obtain the relations 

A1O+ B:+I,- N jpoj, A*~+c~Ll-,~f,j (2.6) 

We turn to problems for spaces with cracks 81 defined by the boundary conditions (2.3). 
Considering the case of no tangential and normal stresses in the planes s1 =O separately, 
we arrive at the following system of dual integral equations: 

~-%%r,@)k=O (2.7) 

j4'(QA(k)d:=o (ai<r<co) 

gEA,'(&)h(MdE~Q;(r)- 2(ihr(~)ci jAl’(E)Jo@)dg- g ffB,j(g)J,@)df 
0 iot?w 0 
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where 31 is a Bessel function of the first kind, and ut4a and IQ@ are components of the 
vector 3,'. 

We select the solution of (2.7) in the following form 

0% 01 
A1'(U -1 c~~(t)sin6t& &*G)- S ~+{:)coa~tdt I24 

0 0 

Here q~(t),j?i(1) are functions that are continuous together with their first derivatives 
in the intervals fO,ail, and in addition 'pi(O)= 0. We see by substituting (2.8) into the 
first three equations in (2.7) that the first equation is satisfied identically for any 
functions (PI (i) of the class uuder consideration, and the second is satisfied under the 
condition 

'i 

1 %((t)dt-=C (24 
0 

while the third results in the integral equation 

0 

TjKJjE ~i~~~0(Er)up(-14-~~l~~~~~d~-j(~~~(~)+~:,’(e))~~(tr)dE 

0 0 

On the basis of the relationships (2.8), the last equation frcm (2.7) can be reduced 
by integration with respect to r to the form 

(24) 

On the basis of the known solution of the Abel equation, the relationships (2.10) and 

(2.11) axe reduced to the following integral equations of the second kind: 
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exp(-~z~- zjlB)~~+cPj(r)S(Iz,-_glE--)ms~~s~ K 
0 

Having determined the constants Ct by integrating the last equation with respect to t 

between 0 and al, taking condition (2.9) into account, we reduce system (2.121 to the 

following form 

(2.13) 

K1, j (~9 t) - -&Iz~-z~ 1 (G(z-f)-G(z+~) +D (z--~)-D(x+Q) 

K*,f (29 4 = tzj - zJ# ((2 + t) 0% (z’+ t) + (t - z) Da (t -2)) 

K,,j (G t) = (z, - zt)* ((r + t) Dz (z + t) -t (z - 1) D' (z - 

a) - ‘/a I zj - zt I al-l (D (at - 4 -D (ai + 4) 

Ko,j(Z,t)=~lZi-Zjl(-Gg+t)-o(z-i)- 

a;'((a,+z)D(a~+=)-(a~-~)D(a~--)))-~(~z~-zj~(D(~+t)+D(x-Z)) - 

(2 - ziy - y* 
G(y) - ((Sj’_ zip + jr’)’ ’ D (Y) = (Zj -a:,: + Y’ 

The unknown functions Alo (E),AIo(t),AI 5+i(&),A,N+1(~) are eliminated from the integral 

equations obtained by using the system of algebraic equations (2.6) and expressions (2.8). 
Therefore, the problem for a layer with inclusions has been reduced to solving a system 

of Fredholm integral equatians of the second kind (2.13) and the algebraic equations 12.6). 
If the functions qt (t)and $1(t) are found from these equations, then the normal and shear 
stresses in the planes 2 = zi outside the slits St can be determined frcm the expressions 

%'=~6&%)J&)~~, o~,i=-~EA:Wl&)dE (2.14) 
cl 0 

where A,'(E). AZ'(f) are found from (2.8). 
Mparticular, the asymptotic expressions for the stresses in the neighbourhood of the 

contours (r+ Ui) will have the form 

(2.15) 

Here C(i) is a bounded quantity as r-+ ai. 
Determining the stress intensity factors &,&I from the relationships (2.141, and 

using the results from /3,4/, we find the magnitude of the normal and tangential stress 
concentrations in the neighbourhood of the inclusions 

(2.16) 
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where pi is the radius of curvature of the apex of the t-th inclusion. 
As an illustration, we present the value of a numerical analysis of (2.13) for the case 

of an infinite space with two identical spheroidal inclusions. A field of uniaxial tension 
in the direction of the axis of the inclusions is given at infinity. The results arerepresent- 
ed in Fig. 2 for different values of the parameter fl=alc where v=~=O.3, and Hla=2. 

Also presented for comparison are the data from /6/ (the dashed line) obtained by the 
method of equivalent inclusion. As is seen from the curves, there is good agreement between 
the results even for fairly thick inclusions and a broad range of variation of the parameter 
El = E1l.E. 
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2. 

3. 
4. 

5. 

6. 

7. 

8. 

9. 

The results in /7-9/ follow from (2.13) and (2.16) as special cases. 
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THE STANDARD EQUATION METHOD IN THE DYMU4ICS OF 
STRUCTURALLY INHOMOGENEOUS ELASTIC tEDIA* 

A.V. CHIGAREV 

The development of the standard equation method is examined for 
studying harmonic wave propagation in stochastically inhomogeneous elastic 
media. The Helmholtz operator equation describing the propagation of a 
mean scalar field in a medium is investigated as the standard equation. 
For an arbitrary correlation function of the elastic coefficients of the 
medium, the roots of the dispersion equation are found by expanding them 
in a series in the dispersion parameter, and the eigenvectors of the 
operator are correspondingly determined approximately. For media of the 
exponential class, the roots and eigenfunctions of the standard problem 
are determined exactly. Results obtained in solving the standard problem, 
are used in investigating wave propagation in elastic media; the roots and 
eigenvectors are found in the form of a series expansion in the dispersion. 
A relationship is set up between the spectra of the elastic operator and 
the operator of the standard problem. Formulas are obtained to find the 
mean elastic fields (including the eigenvectorsl in terms of the mean 
standard functions in the form of scattering series. 

The elastic operator in an isotropic homogeneous body has eigenvectors 
in the formof longitudinal and transverse waves satisfying .the Eelmholtz 
equations. The eigenvalues and vectors of an elastic operator are a set 
of eigenvalues and vectors of the Relmholtz operator /l/. The elasticity 
equations do not split into Helmholtz equations or scalar equations in the 
general case in an inhomogeneous medium. This can be done for high 
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